8 resultados para Harmful cyanobacteria

em eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Harmful algal blooms (HABs) are truly global marine phenomena of increasing significance. Some HAB occurrences are different to observe because of their high spatial and temporal variability and their advection, once formed, by surface currents. A serious HAB occurred in the Bohai Sea during autumn 1998, causing the largest fisheries economic loss. The present study analyzes the formation, distribution, and advection of HAB using satellite SeaWiFS ocean color data and other oceanographic data. The results show that the bloom originated in the western coastal waters of the Bohai Sea in early September, and developed southeastward when sea surface temperature (SST) increased to 25-26 °C. The bloom with a high Chl-a concentration (6.5 mg m-3) in center portion covered an area of 60 × 65 km2. At the end of September, the bloom decayed when SST decreased to 22-23 °C. The HAB may have been initiated by a combination of the river discharge nutrients in the west coastal waters and the increase of SST; afterwards it may have been transported eastward by the local circulation that was enhanced by northwesterly winds in late September and early October.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fish collected after a mass mortality at an artificial lake in south-east Queensland, Australia, were examined for the presence of nodularin as the lake had earlier been affected by a Nodularia bloom. Methanol extracts of muscle, liver, peritoneal and stomach contents were analysed by HPLC and tandem mass spectrometry; histological examination was conducted on livers from captured mullet. Livers of sea mullet (Mugil cephalus) involved in the fish kill contained high concentrations of nodularin (median 43.6 mg/kg, range 40.8-47.8 mg/kg dry weight; n = 3) and the toxin was also present in muscle tissue (median 44.0 mu g/kg, range 32.3-56.8 mu g/kg dry weight). Livers of fish occupying higher trophic levels accumulated much lower concentrations. Mullet captured from the lake 10 months later were also found to have high hepatic nodularin levels. DNA sequencing of mullet specimens revealed two species inhabiting the study lake: M. cephalus and an unidentified mugilid. The two mullet species appear to differ in their exposure and/or uptake of nodularin, with M. cephalus demonstrating higher tissue concentrations. The feeding ecology of mullet would appear to explain the unusual capacity of these fish to concentrate nodularin in their livers; these findings may have public health implications for mullet fisheries and aquaculture production where toxic cyanobacteria blooms affect source waters. This report incorporates a systematic review of the literature on nodularin measured in edible fish, shellfish and crustaceans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Mammalian predators are controlled by poison baiting in many parts of the world, often to alleviate their impacts on agriculture or the environment. Although predator control can have substantial benefits, the poisons used may also be potentially harmful to other wildlife. 2. Impacts on non-target species must be minimized, but can be difficult to predict or quantify. Species and individuals vary in their sensitivity to toxins and their propensity to consume poison baits, while populations vary in their resilience. Wildlife populations can accrue benefits from predator control, which outweigh the occasional deaths of non-target animals. We review recent advances in Australia, providing a framework for assessing non-target effects of poisoning operations and for developing techniques to minimize such effects. We also emphasize that weak or circumstantial evidence of non-target effects can be misleading. 3. Weak evidence that poison baiting presents a potential risk to non-target species comes from measuring the sensitivity of species to the toxin in the laboratory. More convincing evidence may be obtained by quantifying susceptibility in the field. This requires detailed information on the propensity of animals to locate and consume poison baits, as well as the likelihood of mortality if baits are consumed. Still stronger evidence may be obtained if predator baiting causes non-target mortality in the field (with toxin detected by post-mortem examination). Conclusive proof of a negative impact on populations of non-target species can be obtained only if any observed non-target mortality is followed by sustained reductions in population density. 4. Such proof is difficult to obtain and the possibility of a population-level impact cannot be reliably confirmed or dismissed without rigorous trials. In the absence of conclusive evidence, wildlife managers should adopt a precautionary approach which seeks to minimize potential risk to non-target individuals, while clarifying population-level effects through continued research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chytridiomycosis is an emerging infectious disease of amphibians caused by the fungal pathogen Batrachochytrium dendrobatidis, and its role in causing population declines and species extinctions worldwide has created an urgent need for methods to detect it. Several reports indicate that in anurans chytridiomycosis can cause the depigmentation of tadpole tnouthparts, but the accuracy of using depigmentation to determine disease status remains uncertain. Our objective was to determine for the Mountain Yellow-legged Frog (Rana muscosa) whether visual inspections of the extent of tadpole mouthpart depigmentation could be used to accurately categorize individual tadpoles or R. muscosa populations as B. dendrobatidis-positive or negative. This was accomplished by assessing the degree of mouthpart depigmentation in tadpoles of known disease status (based on PCR assays). The depigmentation of R. muscosa tadpole mouthparts was associated with the presence of B. dendrobatidis, and this association was particularly strong for upper jaw sheaths. Using a rule that classifies tadpoles with upper jaw sheaths that are 100% pigmented as uninfected and those with jaw sheaths that are <100% pigmented as infected resulted in the infection status of 86% of the tadpoles being correctly classified. By applying this rule to jaw sheath pigmentation scores averaged across all tadpoles inspected per site, we were able to correctly categorize the infection status of 92% of the study populations. Similar research on additional anurans is critically needed to determine how broadly applicable our results for R. muscosa are to other species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cucurbit crops host a range of serious sap-sucking insect pests, including silverleaf whitefly (SLW) and aphids, which potentially represent considerable risk to the Australian horticulture industry. These pests are extremely polyphagous with a wide host range. Chemical control is made difficult due to resistance and pollution, and other side-effects are associated with insecticide use. Consequently, there is much interest in maximising the role of biological control in the management of these sap-sucking insect pests. This study aimed to evaluate companion cropping alongside cucurbit crops in a tropical setting as a means to increase the populations of beneficial insects and spiders so as to control the major sap-sucking insect pests. The Population of beneficial and harmful insects, with a focus on SLW and aphids, and other invertebrates were sampled weekly oil four different crops which could be used for habitat manipulation: Goodbug Mix (GBM; a proprietary seed Mixture including self-sowing annual and perennial herbaceous flower species); lablab (Lablab purpureus L. Sweet); lucerne (Medicago sativa L.); and niger (Guizotia abyssinica (L.f.) Cass.). Lablab hosted the highest numbers of beneficial insects (larvae and adults of lacewing (Mallada signata (Schneider)), ladybird beetles (Coccinella transversalis Fabricius) and spiders) while GBM hosted the highest numbers of European bees (Apis mellifera Linnaeus) and spiders. Lucerne and niger showed little promise in hosting beneficial insects, but lucerne hosted significantly more spiders (double the numbers) than niger. Lucerne hosted significantly more of the harmful insect species of aphids (Aphis gossypii (Glover)) and Myzus persicae (Sulzer)) and heliothis (Heliothis armigera Hubner). Niger hosted significantly more vegetable weevils (Listroderes difficillis (Germar)) than the other three species. Therefore, lablab and GBM appear to be viable options to grow within cucurbits or as field boundary crops to attract and increase beneficial insects and spiders for the control of sap-sucking insect pests. Use of these bio-control strategies affords the opportunity to minimise pesticide usage and the risks associated with pollution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extractive components obtained from milling residues of white cypress were studied for chemical identity and bioactivity with a view to developing a commercial use for these components, thus increasing the value of the residues and improving the economics of cypress sawn wood production. Extracts obtained by solvent or steam extraction techniques from cypress sawdust were each fractionated by a range of techniques into groups of similar compounds. Crude extracts and fractions were screened against a range of agricultural pests and diseases, including two fungi, subterranean termites, fruit spotting bugs, two-spotted mites, thrips, heliothis, banana scab moths, silverleaf whiteflies, cattle tick adults and larvae, and ruminant gastrointestinal nematodes. Additional screening was undertaken where encouraging results were achieved, for two-spotted mites, thrips, silverleaf whiteflies, cattle tick adults and ruminant gastrointestinal nematodes. After considering degrees of efficacy against, and economic importance of, the agricultural pests, and likely production costs of extracts and fractions, the crude extract (oil) produced by steam distillation was chosen for further study against silverleaf whitefly. A useful degree of control was achievable when this oil was applied to tomato or eggplant at 0.1%, with much less harmful effects on a beneficial insect. Activity of the oil against silverleaf whitefly was undiminished 3.5 years after it was generated. There was little benefit from supplementing the extract with co-formulated paraffinic oil. From the steam distilled oil, fifty-five compounds were characterised, thirty-five compounds representing 92.478 % of the oil, with guaiol (20.8%) and citronellic acid (15.9%) most abundant. These two compounds, and a group of oxygenated compounds containing bulnesol and a range of eudesmols, were found to account for most of the activity against silverleaf whitefly. This application was recommended for first progression to commercialisation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aflatoxin is a potent carcinogen produced by Aspergillus flavus, which frequently contaminates maize (Zea mays L.) in the field between 40° north and 40° south latitudes. A mechanistic model to predict risk of pre-harvest contamination could assist in management of this very harmful mycotoxin. In this study we describe an aflatoxin risk prediction model which is integrated with the Agricultural Production Systems Simulator (APSIM) modelling framework. The model computes a temperature function for A. flavus growth and aflatoxin production using a set of three cardinal temperatures determined in the laboratory using culture medium and intact grains. These cardinal temperatures were 11.5 °C as base, 32.5 °C as optimum and 42.5 °C as maximum. The model used a low (≤0.2) crop water supply to demand ratio—an index of drought during the grain filling stage to simulate maize crop's susceptibility to A. flavus growth and aflatoxin production. When this low threshold of the index was reached the model converted the temperature function into an aflatoxin risk index (ARI) to represent the risk of aflatoxin contamination. The model was applied to simulate ARI for two commercial maize hybrids, H513 and H614D, grown in five multi-location field trials in Kenya using site specific agronomy, weather and soil parameters. The observed mean aflatoxin contamination in these trials varied from <1 to 7143 ppb. ARI simulated by the model explained 99% of the variation (p ≤ 0.001) in a linear relationship with the mean observed aflatoxin contamination. The strong relationship between ARI and aflatoxin contamination suggests that the model could be applied to map risk prone areas and to monitor in-season risk for genotypes and soils parameterized for APSIM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aflatoxin is a potent carcinogen produced by Aspergillus flavus, which frequently contaminates maize (Zea mays L.) in the field between 40° north and 40° south latitudes. A mechanistic model to predict risk of pre-harvest contamination could assist in management of this very harmful mycotoxin. In this study we describe an aflatoxin risk prediction model which is integrated with the Agricultural Production Systems Simulator (APSIM) modelling framework. The model computes a temperature function for A. flavus growth and aflatoxin production using a set of three cardinal temperatures determined in the laboratory using culture medium and intact grains. These cardinal temperatures were 11.5 °C as base, 32.5 °C as optimum and 42.5 °C as maximum. The model used a low (≤0.2) crop water supply to demand ratio—an index of drought during the grain filling stage to simulate maize crop's susceptibility to A. flavus growth and aflatoxin production. When this low threshold of the index was reached the model converted the temperature function into an aflatoxin risk index (ARI) to represent the risk of aflatoxin contamination. The model was applied to simulate ARI for two commercial maize hybrids, H513 and H614D, grown in five multi-location field trials in Kenya using site specific agronomy, weather and soil parameters. The observed mean aflatoxin contamination in these trials varied from <1 to 7143 ppb. ARI simulated by the model explained 99% of the variation (p ≤ 0.001) in a linear relationship with the mean observed aflatoxin contamination. The strong relationship between ARI and aflatoxin contamination suggests that the model could be applied to map risk prone areas and to monitor in-season risk for genotypes and soils parameterized for APSIM.